Genome wide analysis of protein production load in Trichoderma reesei

نویسندگان

  • Tiina M Pakula
  • Heli Nygren
  • Dorothee Barth
  • Markus Heinonen
  • Sandra Castillo
  • Merja Penttilä
  • Mikko Arvas
چکیده

BACKGROUND The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is a widely used industrial host organism for protein production. In industrial cultivations, it can produce over 100 g/l of extracellular protein, mostly constituting of cellulases and hemicellulases. In order to improve protein production of T. reesei the transcriptional regulation of cellulases and secretory pathway factors have been extensively studied. However, the metabolism of T. reesei under protein production conditions has not received much attention. RESULTS To understand the physiology and metabolism of T. reesei under protein production conditions we carried out a well-controlled bioreactor experiment with extensive analysis. We used minimal media to make the data amenable for modelling and three strain pairs to cover different protein production levels. With RNA-sequencing transcriptomics we detected the concentration of the carbon source as the most important determinant of the transcriptome. As the major transcriptional response concomitant to protein production we detected the induction of selected genes that were putatively regulated by xyr1 and were related to protein transport, amino acid metabolism and transcriptional regulation. We found novel metabolic responses such as production of glycerol and a cellotriose-like compound. We then used this cultivation data for flux balance analysis of T. reesei metabolism and demonstrate for the first time the use of genome wide stoichiometric metabolic modelling for T. reesei. We show that our model can predict protein production rate and provides novel insight into the metabolism of protein production. We also provide this unprecedented cultivation and transcriptomics data set for future modelling efforts. CONCLUSIONS The use of stoichiometric modelling can open a novel path for the improvement of protein production in T. reesei. Based on this we propose sulphur assimilation as a major limiting factor of protein production. As an organism with exceptional protein production capabilities modelling of T. reesei can provide novel insight also to other less productive organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical composition and protein enrichment of orange peels and sugar beet pulp after fermentation by two Trichoderma species

The present experiment aimed at increasing orange peel and sugar beet pulp protein content through solid-state fermentation by Trichoderma reesei and Trichoderma viride. In vitro digestibility and changes in the chemical composition of the fermented products were determined after seven days of fungal cultivation using gas production tests. The cultivation of T. reesei and T. viride on orange pe...

متن کامل

Comparison of biochemical properties of recombinant endoglucanase II of Trichoderma reesei in methylotrophic yeasts, Pichia pastoris and Hansenula polymorpha

Bioconversion of cellulosic material into bioethanol needs cellulase complex enzymesthat contain endoglucanase, exoglucanase and beta glucosidase. One of the most important organisms that produce cellulases is the filamentous fungi, Trichoderma reesei which able to secrete large amounts of different cellulases. These enzymes are probably the most widely used cellulases industrially, however, th...

متن کامل

Cellulase Production by Trichoderma reesei using Sugar Beet Pulp

Cellulase production by the fungus Trichoderma reesei was studied using sugar beet pulp (SBP) as a substrate. The subculture medium was a salt solution consisting of KH2PO4, CaCl2, etc. Fungal cells were sub-cultured in an orbital shaker (180 rpm) at 30°C for 1-2 generations (two days for each generation) and were then used as an inoculum. Exponential cells were inoculated into a medium contain...

متن کامل

Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production

BACKGROUND The soft rot ascomycetal fungus Trichoderma reesei is utilized for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. T. reesei uses several different enzymes for the degradation of plant cell wall-derived material, including 9 characterized cellulases, 15 characterized hemicellulases and at least 42 genes predicted to encode cellulolytic or hemic...

متن کامل

Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters

BACKGROUND Trichoderma reesei (Ascomycota, Pezizomycotina) QM6a is a model fungus for a broad spectrum of physiological phenomena, including plant cell wall degradation, industrial production of enzymes, light responses, conidiation, sexual development, polyketide biosynthesis, and plant-fungal interactions. The genomes of QM6a and its high enzyme-producing mutants have been sequenced by second...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016